The Specified Chemistry Whole Atmosphere Community Climate Model (SCWACCM)
نویسندگان
چکیده
We here present, document and validate a new atmospheric component of the Community Earth System Model (CESM1): the Specified Chemistry Whole Atmosphere Community Climate Model (SC-WACCM). As the name implies, SC-WACCM is a middle atmosphere-resolving model with prescribed, rather than interactive chemistry. Ozone concentrations are specified throughout the atmosphere, using zonal and monthly mean climatologies computed by a companion integration with the Whole Atmosphere Community Climate Model (WACCM). Above 65 km, in addition, the climatological chemical and shortwave heating, nitrogen oxide, atomic and molecular oxygen and carbon dioxide are also prescribed from the companion WACCM integration. We carefully compare the climatology and the climate variability of preindustrial integrations of SC-WACCM and WACCM each coupled with active land, ocean and sea-ice components. We note some differences in upper stratospheric and lower mesospheric temperature, just below the 65 km transition level, due to the diurnal ozone cycle that is not captured when monthly mean ozone is used. Nonetheless, we find that the climatology and variability of the stratosphere, the troposphere and surface climate are nearly identical in SC-WACCM and WACCM. Notably, the frequency and amplitude of Northern Hemisphere stratospheric sudden warmings in the two integrations are not significantly different. Also, we compare WACCM and SC-WACCM to CCSM4, the ‘‘lowtop’’ version of CESM1, and we find very significant differences in the stratospheric climatology and variability. The removal of the chemistry reduces the computational cost of SC-WACCM to approximately one half of WACCM: in fact, SC-WACCM is only 2.5 times more expensive than CCSM4 at the same horizontal resolution. This considerable reduction in computational cost makes the new SC-WACCM component of CESM1 ideally suited for studies of stratosphere-troposphere dynamical coupling and, more generally, the role of the stratosphere in the climate system.
منابع مشابه
Observations of gravity wave forcing of the mesopause region during the January 2013 major Sudden Stratospheric Warming
Studies of vertical and interhemispheric coupling during Sudden Stratospheric Warmings (SSWs) suggest that gravity wave (GW) momentum flux divergence plays a key role in forcing the middle atmosphere, although observational validation of GW forcing is limited. We present a whole atmosphere view of zonal winds from the surface to 100 km during the January 2013 major SSW, together with observed G...
متن کاملSimulation of polar stratospheric clouds in the specified dynamics version of the whole atmosphere community climate model
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. [1] We evaluate the simulation of polar stratospheric clouds (PSCs) in the Specified Dynamics version of the Whole ...
متن کاملStratospheric ozone chemistry feedbacks are not critical for the determination of climate sensitivity in CESM1(WACCM)
The Community Earth System Model-Whole Atmosphere Community Climate Model (CESM1-WACCM) is used to assess the importance of including chemistry feedbacks in determining the equilibrium climate sensitivity (ECS). Two 4×CO2 model experiments were conducted: one with interactive chemistry and one with chemical constituents other than CO2 held fixed at their preindustrial values. The ECS determined...
متن کاملExtending scalability of the community atmosphere model
The Community Atmosphere Model (CAM) is the atmosphere component of the Community Climate System Model (CCSM), and is the largest consumer of computing resources in typical CCSM simulations. The parallel implementation of the Community Atmosphere Model (CAM) employs a number of different domain decompositions. Currently, each decomposition must utilize the same number of MPI processes, limiting...
متن کاملSimulation of polar ozone depletion: An update
We evaluate polar ozone depletion chemistry using the specified dynamics version of the Whole Atmosphere Community Climate Model for the year 2011. We find that total ozone depletion in both hemispheres is dependent on cold temperatures (below 192 K) and associated heterogeneous chemistry on polar stratospheric cloud particles. Reactions limited to warmer temperatures above 192 K, or on binary ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014